US 10,599,560 B2

5

game environment or virtual simulation environment to the
user. The display device 110 is driven or controlled by the
one or more GPUs 106 and optionally the CPU 104. The
GPU 106 processes aspects of graphical output that assists
in speeding up rendering of output through the display
device 110.

The ECS device 101 also includes a memory 102 con-
figured to store a game engine 112 (e.g., executed by the
CPU 104 or GPU 106) that communicates with the display
device 110 and also with other hardware such as the input
device(s) 108 to present a game (e.g., video game) or
simulation to a user (not shown in the Figure). The game
engine 112 would typically include a physics engine, colli-
sion detection, rendering, networking, sound, animation, and
the like in order to provide the user with a video game (or
simulation) environment. The game engine 112 includes an
ECS module 114 that provides various entity component
system functionality as described herein. Each of the ECS
module 114, and game engine 112 include computer-execut-
able instructions residing in the memory 102 that are
executed by the CPU 104 and optionally with the GPU 106
during operation. The ECS module 114 may be integrated
directly within the game engine 112, or may be implemented
as an external piece of software (e.g., a plugin).

In accordance with an embodiment, the ECS module 114,
executing on the ECS device 101, may be configured to
create and manipulate an entity, which includes data, and
which is a representation of a game object within a scene of
a video game (or simulation). The entity can represent any
game object (e.g., any virtual object within a game or
simulation) including characters, props, scenery and effects.
The entity includes data (e.g., entity data) that describes all
aspects, properties and behaviors of the game object which
it represents over time. The data includes data describing the
visual aspects (texture, color, size, shape, orientation and the
like) of the game object; and the data includes data describ-
ing the behavior for the game object (e.g., movement of the
object and the physics of interaction with other objects in the
environment). The behavior of an entity is defined by the
processes (e.g., functions) that modifies data of an entity.

In accordance with an embodiment, the entity data
includes one or more small groups of data referred to herein
as component data. In accordance with an embodiment,
during execution (e.g., at runtime during game play) the
ECS module 114 creates a component for an entity within a
data value array structure (e.g., a ‘struct’ from within the C#
programing language), wherein the clements within the
array are laid out in contiguous memory blocks within the
memory 102. A component does not contain a pointer to data
in other distant locations within a memory 102. A compo-
nent includes data that is associated with a logical grouping
of data and behaviors which are used for adding function-
ality to a single entity. A component can add any type of
functionality to an entity, including visual attributes and
interaction with other components (e.g., within the same
entity or within a different entity). The combination of
components within an entity, and the data within the com-
ponents, contribute to the properties and functionality of the
entity in the game world during game play. For example,
there can be a camera component which gives an entity the
properties of a camera. There can be a light component
which gives an entity the properties of a light. For example,
a component could define the position, rotation and scale of
an entity within a game world. For simplicity of explanation,
we will refer to the component that defines the position,
rotation and scale of an entity as the transform component
since modifying the transform component of an entity would

10

15

20

25

30

35

40

45

50

55

60

65

6

move, rotate or scale the entity (i.e., transform it) within the
game world. As another example of a component, a com-
ponent referred to herein as a rigidbody component could
enable physical behavior for an entity by allowing the entity
to be affected by gravity within the game world. Still another
example of a component could be a component, referred to
herein as a collider component, that defines the shape of an
entity for the purposes of a physical collision with one or
more other entities.

In a typical game or simulation, a plurality of entities have
some overlap in the type of components they contain (e.g.,
two or more entities will have one or more components of
the same type). For example, consider a game that includes
five entities within a scene and wherein each entity has a
transform component (e.g., with the transform data being
independent for each entity). In accordance with an embodi-
ment, when two or more entities contain the exact same
number and type of components, the entities are referred to
herein as an archetype. All entities with the same archetype
have the same number and type of components and therefore
share similarities with respect to the area which they occupy
in memory 102. However, even though all entities with the
same archetype have the same number and type of compo-
nents, the specific component data for an entity is indepen-
dent (and usually different) from the other entities. In
accordance with an embodiment, the ECS module 114
groups (e.g., places) a plurality of entities of an archetype
(e.g., all the entities of the archetype) contiguously together
in memory 102 (e.g., as described with respect to FIG. 2A,
2B, 3 and with respect to the methods described in FIGS.
4A, 4B and 4C). A location in memory 102 where the
plurality of entities of a single archetype are grouped
together is referred to herein as a chunk. A chunk is a
contiguous block (e.g., a section or area) within memory 102
containing entities sharing the same archetype. In accor-
dance with some embodiments, a single archetype is con-
tained within a single chunk. In accordance with other
embodiments, a single archetype can be divided into two or
more chunks if a single chunk is not large enough to contain
the archetype. In accordance with an embodiment a chunk
has a fixed size in memory (e.g., 16 kilobytes or 64 kilo-
bytes)

In accordance with an embodiment, and shown in FIG.
2A, is a schematic diagram of a data layout for a chunk 200
in memory 102. Data within a chunk 200 is divided (e.g., by
the ECS module 114) into a plurality of sections, wherein a
section contains the data for a single type of component
(e.g., atransform component) for all entities in the archetype
associated with the chunk 200. In some embodiments the
data within a section is created by the ECS module 114
within a data value structure such as an array. Throughout
the description herein, an array which contains all data
within a section (e.g., for a component type) is referred to as
a component data array. In accordance with an embodiment,
and shown in FIG. 2A, the plurality of different component
data arrays within a chunk 200 are placed by the ECS
contiguously in memory 102 so that all the component data
is laid out linearly and compact (e.g., contiguously) within
memory 102. FIG. 2A shows an example wherein a chunk
200 contains an archetype that has a plurality of entities
(e.g., 5 entities) that all contain three components: a first
component (component ‘A’), a second component (compo-
nent (‘B’), and a third component (component ‘C’). The data
for component A is placed by the ECS module 114 in a first
data array in a first section 204A. The data for component B
is in a second data array in a second section 204B. The data
for component C is placed by the ECS module 114 in a third



